Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 512
Filtrar
1.
Front Nutr ; 11: 1349006, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38559777

RESUMO

Aim: This meta-analysis was conducted to investigate the impact of saffron supplementation on the glycemic outcomes in patients with diabetes. Methods: Eight electronic databases were systematically searched from inception to March 31, 2023. RCTs of patients with diabetes receiving saffron compared with placebo which reported glycemic control outcomes were identified. WMD and 95% CIs were pooled using fixed-effects or random-effects models, depending on the significance of heterogeneity. Results: Out of the 837 citations screened, ten RCTs were included in the systematic review and meta-analysis. A total of 562 participants were enrolled, with 292 assigned to the intervention group and 270 to the control group. Saffron was administered at a dose of 5 mg/day to 1 g/day. Compared with placebo, saffron supplementation significantly reduced FPG (WMD = -8.42 mg/dL; 95% CI: -13.37, -3.47; p = 0.001) and HbA1c (WMD = -0.22%; 95% CI: -0.33, -0.10; p < 0.001). However, there was no significant effect on insulin levels, QUICKI and HOMA-IR. Conclusion: Saffron is effective for patients with diabetes in terms of FPG and HbA1c, therefore, it appears to be a promising adjuvant for the glycemic control of DM. However, the overall methodological quality of the identified studies is heterogeneous, limiting the interpretation of the benefit of saffron in diabetes. More long-term follow-up, well-designed and large-scale clinical trials are warranted to draw definitive conclusions. Systematic review registration: The protocol of review was registered in International Prospective Register of Systematic Reviews (PROSPERO) (ID: CRD42023426353).

2.
Artigo em Inglês | MEDLINE | ID: mdl-38592781

RESUMO

Fifty-two consecutive PM2.5 samples from December 2021 to February 2022 (the whole winter) were collected in the center of Chongqing, a humid metropolitan city in China. These samples were analysed for the 16 USEPA priority polycyclic aromatic hydrocarbons (16 PAHs) to explore their composition and sources, and to assess their cancer risks to humans. The total concentrations of the 16 PAHs (ng m-3) ranged from 16.45 to 174.15, with an average of 59.35 ± 21.45. Positive matrix factorization (PMF) indicated that traffic emissions were the major source (42.4%), followed by coal combustion/industrial emission (31.3%) and petroleum leakage/evaporation (26.3%). The contribution from traffic emission to the 16 PAHs increased from 40.0% in the non-episode days to as high as 46.2% in the air quality episode during the sampling period. The population attributable fraction (PAF) indicates that when the unit relative risk (URR) is 4.49, the number of lung cancer cases per million individuals under PAH exposure is 27 for adults and 38 for seniors, respectively. It was 5 for adults and 7 for seniors, when the URR is 1.3. The average incremental lifetime cancer risk (ILCR) for children, adolescents, adults and seniors was 0.25 × 10-6, 0.23 × 10-6, 0.71 × 10-6, and 1.26 × 10-6, respectively. The results of these two models complemented each other well, and both implied acceptable PAH exposure levels. Individual genetic susceptibility and exposure time were identified as the most sensitive parameters. The selection and use of parameters in risk assessment should be further deepened in subsequent studies to enhance the reliability of the assessment results.

3.
Eur J Neurol ; : e16296, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38588211

RESUMO

BACKGROUND AND PURPOSE: The ratio of serum uric acid (SUA) to serum creatinine (SCr), representing normalized SUA for renal function, is associated with functional outcome in acute ischaemic stroke (AIS) patients. However, its effect on AIS patients undergoing mechanical thrombectomy (MT) remains unknown. This study aimed to investigate the influence of the SUA/SCr ratio on clinical outcome in MT-treated AIS patients. METHODS: Acute ischaemic stroke patients who underwent MT were continuously enrolled from January 2018 to June 2023. Upon admission, SUA and SCr levels were recorded within the initial 24 h. Stroke severity was determined using the National Institutes of Health Stroke Scale (NIHSS) score. Clinical outcome included poor functional outcome (modified Rankin Scale score >2) at 90 days, symptomatic intracranial haemorrhage and death. RESULTS: Amongst 734 patients, 432 (58.8%) exhibited poor functional outcome at 90 days. The SUA/SCr ratio exhibited a negative correlation with NIHSS score (ρ = -0.095, p = 0.010). Univariate analysis revealed a significant association between SUA/SCr ratio and poor functional outcome. After adjusting for confounders, the SUA/SCr ratio remained an independent predictor of functional outcome (adjusted odds ratio 0.348, 95% confidence interval 0.282-0.428, p < 0.001). Receiver operating characteristic curve analysis highlighted the ability of the SUA/SCr ratio to predict functional outcome, with a cutoff value of 3.62 and an area under the curve of 0.757 (95% confidence interval 0.724-0.788, p < 0.001). CONCLUSION: The SUA/SCr ratio is correlated with stroke severity and may serve as a predictor of 90-day functional outcome in AIS patients undergoing MT.

4.
Front Immunol ; 15: 1374900, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38605968

RESUMO

Introduction: Cells expressing taste signaling elements in non-gustatory tissues have been described as solitary chemosensory cells (SCCs) or tuft cells. These "taste-like" cells play a critical role in the maintenance of tissue homeostasis. Although the expression of SCC markers and taste signaling constituents has been identified in mouse gingivae, their role in periodontal homeostasis is still unclear. Methods: Public RNA sequencing datasets were re-analyzed and further validated with RT-PCR/qRT-PCR and immunofluorescent staining to explore the expression of TAS2Rs and downstream signaling constituents in mouse gingival fibroblasts (MGFs). The specific action of salicin on MGFs via Tas2r143 was validated with RNA silence, heterologous expression of taste receptor/Gα-gustducin and calcium imaging. The anti-inflammatory effects of salicin against LPS-induced MGFs were investigated in cell cultures, and were further validated with a ligature-induced periodontitis mouse model using Ga-gustducin-null (Gnat3-/-) mice. Results: The expression of Tas2r143, Gnat3, Plcb2, and TrpM5 was detected in MGFs. Moreover, salicin could activate Tas2r143, elicited taste signaling and thus inhibited LPS-induced chemokines expression (CXCL1, CXCL2, and CXCL5) in MGFs. Consistently, salicin-treatment inhibited periodontal bone loss, inflammatory/chemotactic factors expression, and neutrophil infiltration in periodontitis mice, while these effects were abolished in Gnat3-/- mice. Discussion: Gingival fibroblasts play a critical role in the maintenance of periodontal homeostasis via "SCC-like" activity. Salicin can activate Tas2r143-mediated bitter taste signaling and thus alleviate periodontitis in mouse, indicating a promising approach to the resolution of periodontal inflammation via stimulating the "SCC-like" function of gingival fibroblasts.


Assuntos
Álcoois Benzílicos , Glucosídeos , Lipopolissacarídeos , Periodontite , Transducina , Camundongos , Animais , Periodontite/tratamento farmacológico , Periodontite/metabolismo , Fibroblastos/metabolismo
5.
Drug Discov Today ; : 103979, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38608830

RESUMO

Drug discovery often begins with a new target. Protein-protein interactions (PPIs) are crucial to multitudinous cellular processes and offer a promising avenue for drug-target discovery. PPIs are characterized by multi-level complexity: at the protein level, interaction networks can be used to identify potential targets, whereas at the residue level, the details of the interactions of individual PPIs can be used to examine a target's druggability. Much great progress has been made in target discovery through multi-level PPI-related computational approaches, but these resources have not been fully discussed. Here, we systematically survey bioinformatics tools for identifying and assessing potential drug targets, examining their characteristics, limitations and applications. This work will aid the integration of the broader protein-to-network context with the analysis of detailed binding mechanisms to support the discovery of drug targets.

6.
Anaerobe ; 87: 102854, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38614288

RESUMO

OBJECTIVES: Acute lung injury is a critical complication of severe acute pancreatitis (SAP). The gut microbiota and its metabolites play an important role in SAP development and may provide new targets for AP-associated lung injury. Based on the ability to reverse AP injury, we proposed that Clostridium butyricum may reduce the potential for AP-associated lung injury by modulating with intestinal microbiota and related metabolic pathways. METHODS: An AP disease model was established in mice and treated with C. butyricum. The structure and composition of the intestinal microbiota in mouse feces were analyzed by 16 S rRNA gene sequencing. Non-targeted metabolite analysis was used to quantify the microbiota derivatives. The histopathology of mouse pancreas and lung tissues was examined using hematoxylin-eosin staining. Pancreatic and lung tissues from mice were stained with immunohistochemistry and protein immunoblotting to detect inflammatory factors IL-6, IL-1ß, and MCP-1. RESULTS: C. butyricum ameliorated the dysregulation of microbiota diversity in a model of AP combined with lung injury and affected fatty acid metabolism by lowering triglyceride levels, which were closely related to the alteration in the relative abundance of Erysipelatoclostridium and Akkermansia. In addition, C. butyricum treatment attenuated pathological damage in the pancreatic and lung tissues and significantly suppressed the expression of inflammatory factors in mice. CONCLUSIONS: C. butyricum may alleviate lung injury associated with AP by interfering with the relevant intestinal microbiota and modulating relevant metabolic pathways.

7.
Polymers (Basel) ; 16(7)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38611219

RESUMO

Biaxially oriented polyamide 6 (BOPA6) films were prepared by extrusion casting and biaxial stretching with polyamide 6. The effects of different biaxially oriented on the macroscopic properties of BOPA6 were investigated by characterizing the rheological, crystallization, optical, barrier and mechanical properties. The results show that the increase of stretching temperature leads to the diffusion and regular stacking rate of BOPA6 chain segments towards crystal nuclei increases, the relative crystallinity increases, reaching 27.87% at 180 °C, and the mechanical strength and optical performance decrease. Heat-induced crystallization promotes the transformation of ß-crystals to α-crystals in BOPA6, resulting in a more perfect crystalline structure and enhancing oxygen barrier properties. BOPA6 chains are oriented, and strain-induced crystallization (SIC) occurs during the biaxial stretching. Further increasing the stretch ratio, the relative crystallinity increased to 30.34%. The machine direction (MD) and transverse direction (TD) tensile strength of BOPA6 (B-33) are nearly two times higher than the unstretched film, reaching 134.33 MPa and 155.28 MPa, respectively. In addition, the permeation decreases to 57.61 cc·mil/(m2 day), and the oxygen barrier performance has improved by nearly 30% compared to the sample B-22. BOPA6 has a high storage modulus at a high stretching rate (300%/s). Rapid chain relaxation would promote the molecular chain disorientation, destroy the entangled network of the molecular chain, and lead to a decrease in tensile strength, reducing to about 110 MPa.

8.
Sci Rep ; 14(1): 8879, 2024 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-38632255

RESUMO

There has been increasing interest in the role of epigenetic modification in cancers recently. Among the various modifications, sialylation has emerged as a dominant subtype implicated in tumor progression, metastasis, immune evasion, and chemoresistance. The prognostic significance of sialylation-related molecules has been demonstrated in colorectal cancer. However, the potential roles and regulatory mechanisms of sialylation in lung adenocarcinoma (LUAD) have not been thoroughly investigated. Through Pearson correlation, univariate Cox hazards proportional regression, and random survival forest model analyses, we identified several prognostic long non-coding RNAs (lncRNAs) associated with aberrant sialylation and tumor progression, including LINC00857, LINC00968, LINC00663, and ITGA9-AS1. Based on the signatures of four lncRNAs, we classified patients into two clusters with different landscapes using a non-negative matrix factorization approach. Collectively, patients in Cluster 1 (C1) exhibited worse prognoses than those in Cluster 2 (C2), as well as heavier tumor mutation burden. Functional enrichment analysis showed the enrichment of several pro-tumor pathways in C1, differing from the upregulated Longevity and programmed cell death pathways in C2. Moreover, we profiled immune infiltration levels of important immune cell lineages in two subgroups using MCPcounter scores and single sample gene set enrichment analysis scores, revealing a relatively immunosuppressive microenvironment in C1. Risk analysis indicated that LINC00857 may serve as a pro-tumor regulator, while the other three lncRNAs may be protective contributors. Consistently, we observed upregulated LINC00857 in C1, whereas increased expressive levels of LINC00968, LINC00663, and ITGA9-AS1 were observed in C2. Finally, drug sensitivity analysis suggested that patients in the two groups may benefit from different therapeutic strategies, contributing to precise treatment in LUAD. By integrating multi-omics data, we identified four core sialylation-related lncRNAs and successfully established a prognostic model to distinguish patients with different characterizations. These findings may provide some insights into the underlying mechanism of sialylation, and offer a new stratification way as well as clinical guidance in LUAD.


Assuntos
Adenocarcinoma , RNA Longo não Codificante , Humanos , Prognóstico , Algoritmos , Pulmão , Microambiente Tumoral
9.
Taiwan J Ophthalmol ; 14(1): 15-26, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38654984

RESUMO

Fuchs endothelial corneal dystrophy (FECD) is one of the most common corneal diseases that causes loss of visual acuity in the world. FECD is a genetically and pathogenetically heterogeneous disease that results in the failure of corneal endothelial cells to maintain fluid balance and functional homeostasis of the cornea. Corneal edema, central guttae formation, and bullae development are common corneal pathologies. Currently, the mainstay of FECD treatment is surgery. However, limited sources of corneal graft and postsurgical complications remain problematic. In recent years, with advances in medical science and technology, there have been a few promising trials of new treatment modalities for FECD. In addition to new surgical methods, novel modalities can be classified into pharmacological-associated treatment, cell therapy-associated treatment, and gene therapy-associated treatment. In this article, our primary focus is on the most recent clinical trials related to FECD, and we present a stepwise approach to enhance FECD management and ultimately improve patient outcomes. We thoroughly searched for FECD clinical trials and reviewed the study designs, methodologies, and outcomes of each trial conducted within the past decade. It is imperative for physicians to stay up-to-date with these cutting-edge treatment approaches.

10.
Int J Cosmet Sci ; 2024 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-38433250

RESUMO

OBJECTIVE: Erythema, characterized by the redness of the skin, is a common skin reaction triggered by various endogenous and exogenous factors. This response is often a result of the activation of underlying inflammatory mechanisms within the skin. The objective of this study is to investigate the potential benefits of applying a combination of skincare ingredients, namely allantoin, bisabolol, D-panthenol and dipotassium glycyrrhizinate (AB5D), in the modulation of inflammatory factors associated with erythema. Additionally, the study aims to elucidate the mechanisms by which these ingredients exert their combined actions to alleviate erythema-associated inflammation. METHODS: Human epidermal keratinocytes were exposed to UVB and subsequently treated with AB5D. Transcriptomics profiling was performed to analyse the dose-response effect of AB5D treatment on keratinocytes. The quantitation of inflammatory mediators, including PGE2 , IL-1α, IL-6, IL-8, IL-1RA and TNFα, was performed on cultured media. Additionally, the oxygen radical absorbance capacity (ORAC) assay was carried out to evaluate the total antioxidant capacity of both individual ingredients and the AB5D combination. To assess the in-vitro antioxidant effects of AB5D against UVB-induced oxidative stress in hTERT keratinocytes, real-time quantitation of mitochondrial superoxide was measured through live-cell imaging. RESULTS: The application of AB5D to UVB-exposed keratinocytes downregulated gene sets associated with inflammatory responses, highlighting the anti-inflammatory properties of AB5D. Specifically, AB5D effectively reduced the production of PGE2 , leading to the downregulation of inflammatory cytokines. Moreover, our findings indicate that AB5D exhibits antioxidative capabilities, functioning as both an antioxidant agent and a regulator of antioxidant enzyme expression to counteract the detrimental effects of cellular oxidative stress. CONCLUSION: We demonstrated that AB5D can reduce UVB-induced PGE2 , IL-1α, IL-6, IL-8, IL-1RA and TNFα as well as mitochondrial superoxide. These findings suggest that AB5D may alleviate erythema by modulating inflammation via PGE2 and through antioxidation mechanisms.


L'érythème, caractérisé par une rougeur sur la peau, est une réaction cutanée fréquente déclenchée par divers facteurs endogènes et exogènes. Il s'agit d'une réponse qui résulte souvent de l'activation des mécanismes inflammatoires sous-jacents dans la peau. OBJECTIF: cette étude vise à étudier les bénéfices potentiels de l'application d'une association d'ingrédients de soins cutanés, à savoir l'allantoïne, le bisabolol, le D-panthénol et le glycyrrhizinate dipotassique (AB5D) dans la modulation des facteurs inflammatoires associés à l'érythème. En outre, l'étude vise à élucider les mécanismes par lesquels ces ingrédients exercent leurs actions combinées pour soulager l'inflammation associée à l'érythème. MÉTHODES: les kératinocytes épidermiques humains ont été exposés aux UVB et traités par la suite par AB5D. Un profilage transcriptomique a été effectué pour analyser l'effet dose-réponse du traitement par AB5D sur les kératinocytes. La quantification des médiateurs inflammatoires, y compris PGE2, IL-1α, IL-6, IL-8, IL-1RA et TNFα, a été effectuée sur des milieux de culture. En outre, le dosage de la capacité d'absorption des radicaux oxygénés (Oxygen Radical Absorbance Capacity, ORAC) a été effectué pour évaluer la capacité antioxydante totale des deux ingrédients individuels et de l'association AB5D. Pour évaluer les effets antioxydants in vitro de l'AB5D contre le stress oxydatif induit par les UVB dans les kératinocytes hTERT, on a mesuré la quantification en temps réel du superoxyde mitochondrial par des tests d'imagerie des cellules vivantes. RÉSULTATS: l'application de l'AB5D aux ensembles de gènes régulés à la baisse exposés aux kératinocytes UVB associés à des réponses inflammatoires, a mis en évidence les propriétés anti-inflammatoires de l'AB5D. Plus précisément, l'AB5D a efficacement réduit la production de PGE2, entraînant une régulation négative des cytokines inflammatoires. En outre, nos résultats indiquent que l'AB5D présente des capacités antioxydantes. Il fonctionne à la fois comme un agent antioxydant et comme un régulateur de l'expression enzymatique antioxydante pour contrer les effets néfastes du stress oxydatif cellulaire. CONCLUSION: nous avons montré que l'AB5D pouvait réduire la PGE2 induite par les UVB, l'IL-1α, l'IL-6, IL-8, IL-1RA et le TNFα, ainsi que le superoxyde mitochondrial. Ces résultats suggèrent que l'AB5D pourrait soulager l'érythème en modulant l'inflammation via la PGE2 et via des mécanismes d'antioxydation.

11.
Adv Sci (Weinh) ; : e2309010, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38526177

RESUMO

Intrahepatic cholangiocarcinoma (iCCA) is a highly lethal biliary epithelial cancer in the liver. Here, Laminin subunit gamma-2 (LAMC2) with important oncogenic roles in iCCA is discovered. In a total of 231 cholangiocarcinoma patients (82% of iCCA patients) across four independent cohorts, LAMC2 is significantly more abundant in iCCA tumor tissue compared to normal bile duct and non-tumor liver. Among 26.3% of iCCA patients, LAMC2 gene is amplified, contributing to its over-expression. Functionally, silencing LAMC2 significantly blocks tumor formation in orthotopic iCCA mouse models. Mechanistically, it promotes EGFR protein translation via interacting with nascent unglycosylated EGFR in the endoplasmic reticulum (ER), resulting in activated EGFR signaling. LAMC2-mediated EGFR translation also depends on its interaction with the ER chaperone BiP via their C-terminus. Together LAMC2 and BiP generate a binding "pocket" of nascent EGFR and facilitate EGFR translation. Consistently, LAMC2-high iCCA patients have poor prognosis in two iCCA cohorts. LAMC2-high iCCA cells are highly sensitive to EGFR tyrosine kinase inhibitors (TKIs) treatment both in vitro and in vivo. Together, these data demonstrate LAMC2 as an oncogenic player in iCCA by promoting EGFR translation and an indicator to identify iCCA patients who may benefit from available EGFR-targeted TKIs therapies.

12.
Stem Cell Res Ther ; 15(1): 68, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38443990

RESUMO

BACKGROUND: Mesenchymal stem/stromal cells (MSCs) are of great therapeutic value due to their role in maintaining the function of hematopoietic stem/progenitor cells (HSPCs). MSCs derived from human pluripotent stem cells represent an ideal alternative because of their unlimited supply. However, the role of MSCs with neural crest origin derived from HPSCs on the maintenance of HSPCs has not been reported. METHODS: Flow cytometric analysis, RNA sequencing and differentiation ability were applied to detect the characteristics of stromal cells from 3D human brain organoids. Human umbilical cord blood CD34+ (UCB-CD34+) cells were cultured in different coculture conditions composed of stromal cells and umbilical cord MSCs (UC-MSCs) with or without a cytokine cocktail. The hematopoietic stroma capacity of stromal cells was tested in vitro with the LTC-IC assay and in vivo by cotransplantation of cord blood nucleated cells and stroma cells into immunodeficient mice. RNA and proteomic sequencing were used to detect the role of MSCs on HSPCs. RESULTS: The stromal cells, derived from both H1-hESCs and human induced pluripotent stem cells forebrain organoids, were capable of differentiating into the classical mesenchymal-derived cells (osteoblasts, chondrocytes, and adipocytes). These cells expressed MSC markers, thus named pluripotent stem cell-derived MSCs (pMSCs). The pMSCs showed neural crest origin with CD271 expression in the early stage. When human UCB-CD34+ HSPCs were cocultured on UC-MSCs or pMSCs, the latter resulted in robust expansion of UCB-CD34+ HSPCs in long-term culture and efficient maintenance of their transplantability. Comparison by RNA sequencing indicated that coculture of human UCB-CD34+ HSPCs with pMSCs provided an improved microenvironment for HSC maintenance. The pMSCs highly expressed the Wnt signaling inhibitors SFRP1 and SFRP2, indicating that they may help to modulate the cell cycle to promote the maintenance of UCB-CD34+ HSPCs by antagonizing Wnt activation. CONCLUSIONS: A novel method for harvesting MSCs with neural crest origin from 3D human brain organoids under serum-free culture conditions was reported. We demonstrate that the pMSCs support human UCB-HSPC expansion in vitro in a long-term culture and the maintenance of their transplantable ability. RNA and proteomic sequencing indicated that pMSCs provided an improved microenvironment for HSC maintenance via mechanisms involving cell-cell contact and secreted factors and suppression of Wnt signaling. This represents a novel method for large-scale production of MSCs of neural crest origin and provides a potential approach for development of human hematopoietic stromal cell therapy for treatment of dyshematopoiesis.


Assuntos
Células-Tronco Pluripotentes Induzidas , Células-Tronco Pluripotentes , Humanos , Animais , Camundongos , Proteômica , Células Estromais , Antígenos CD34 , Organoides , Prosencéfalo , RNA
13.
J Transl Med ; 22(1): 222, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38429821

RESUMO

BACKGROUND: Colonoscopy is a classic diagnostic method with possible complications including abdominal pain and diarrhoea. In this study, gut microbiota dynamics and related metabolic products during and after colonoscopy were explored to accelerate gut microbiome balance through probiotics. METHODS: The gut microbiota and fecal short-chain fatty acids (SCFAs) were analyzed in four healthy subjects before and after colonoscopy, along with seven individuals supplemented with Clostridium butyricum. We employed 16S rRNA sequencing and GC-MS to investigate these changes. We also conducted bioinformatic analysis to explore the buk gene, encoding butyrate kinase, across C. butyricum strains from the human gut. RESULTS: The gut microbiota and fecal short-chain fatty acids (SCFAs) of four healthy subjects were recovered on the 7th day after colonoscopy. We found that Clostridium and other bacteria might have efficient butyric acid production through bioinformatic analysis of the buk and assessment of the transcriptional level of the buk. Supplementation of seven healthy subjects with Clostridium butyricum after colonoscopy resulted in a quicker recovery and stabilization of gut microbiota and fecal SCFAs on the third day. CONCLUSION: We suggest that supplementation of Clostridium butyricum after colonoscopy should be considered in future routine clinical practice.


Assuntos
Clostridium butyricum , Microbioma Gastrointestinal , Microbiota , Humanos , Clostridium butyricum/genética , Clostridium butyricum/metabolismo , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Ácidos Graxos Voláteis/metabolismo , Colonoscopia , Ácido Butírico/farmacologia , Ácido Butírico/metabolismo
14.
Int J Mol Med ; 53(4)2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38426556

RESUMO

Following the publication of the above article, an interested reader drew to the authors' attention that, in Fig. 6 on p. 2898, the 'SAH' and 'SAH+NC' data panels contained an apparently overlapping section of data, such that these data appeared to have been derived from the same original source, even though they were intended to show the results from differently performed experiments. The authors have examined their original data, and realize that the 'SAH+NC' data panel had inadvertently been selected incorrectly for this figure. In addition, in response to a further query from the reader, the authors wished to point out that the standard deviations in their study were statistically analysed using GraphPad Prism software version 5.0a. The revised version of Fig. 6, now showing the correct data for the 'SAH+NC' experiment, is shown on the next page. The authors can confirm that the errors associated with this figure did not have any significant impact on either the results or the conclusions reported in this study, and all the authors agree with the publication of this Corrigendum. The authors are grateful to the Editor of International Journal of Molecular Medicine for allowing them the opportunity to publish this Corrigendum; furthermore, they apologize to the readership of the Journal for any inconvenience caused. [International Journal of Molecular Medicine 42: 2891­2902, 2018; DOI: 10.3892/ijmm.2018.3858].

15.
Nanomaterials (Basel) ; 14(5)2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38470758

RESUMO

In this work, a CdS-nanoparticle-decorated WS2 nanosheet heterojunction was successfully prepared and first used to modify ITO electrodes for the construction of a novel photoelectrochemical sensor (CdS/WS2/ITO). The thin-film electrode was fabricated by combining electrophoretic deposition with successive ion layer adsorption and reaction techniques. The results indicated that the synthesized heterojunction nanomaterials displayed excellent photoelectrochemical performance which was much better than that of pristine CdS nanoparticles and 2D WS2 nanosheets. Owing to the formation of the surface heterojunction and the effective interfacial electric field, the enhanced separation of photogenerated electron-hole pairs led to a remarkable improvement in the photoelectrochemical activity of CdS/WS2/ITO. This heterojunction architecture can protect CdS against photocorrosion, resulting in a stable photocurrent. Based on the specific recognition between cysteine and CdS/WS2/ITO, through the specificity of Cd-S bonds, a visible-light-driven photoelectrochemical sensor was fabricated for cysteine detection. The novel photoelectrochemical biosensor exhibited outstanding analytical capabilities in detecting cysteine, with an extremely low detection limit of 5.29 nM and excellent selectivity. Hence, CdS-WS2 heterostructure nanocomposites are promising candidates as novel advanced photosensitive materials in the field of photoelectrochemical biosensing.

16.
Molecules ; 29(5)2024 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-38474515

RESUMO

In this work, Au nanoparticle-decorated ZnO@graphene core-shell quantum dots (Au-ZnO@graphene QDs) were successfully prepared and firstly used to modify an ITO electrode for the construction of a novel photoelectrochemical biosensor (Au-ZnO@graphene QDs/ITO). Characterization of the prepared nanomaterials was conducted using transmission electron microscopy, steady-state fluorescence spectroscopy and the X-ray diffraction method. The results indicated that the synthesized ternary nanomaterials displayed excellent photoelectrochemical performance, which was much better than that of ZnO@graphene QDs and pristine ZnO quantum dots. The graphene and ZnO quantum dots formed an effective interfacial electric field, enhancing photogenerated electron-hole pairs separation and leading to a remarkable improvement in the photoelectrochemical performance of ZnO@graphene QDs. The strong surface plasmon resonance effect achieved by directly attaching Au nanoparticles to ZnO@graphene QDs led to a notable increase in the photocurrent response through electrochemical field effect amplification. Based on the specifical recognition between cysteine and Au-ZnO@graphene QDs/ITO through the specificity of Au-S bonds, a light-driven photoelectrochemical sensor was fabricated for cysteine detection. The novel photoelectrochemical biosensor exhibited outstanding analytical capabilities in detecting cysteine with an extremely low detection limit of 8.9 nM and excellent selectivity. Hence, the Au-ZnO@graphene QDs is a promising candidate as a novel advanced photosensitive material in the field of photoelectrochemical biosensing.

17.
Antioxidants (Basel) ; 13(2)2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38397764

RESUMO

Tuna protein serves as a significant source of bioactive peptides, and its functional properties can be elucidated through predictive modeling, followed by experimental validation. In this study, the active polypeptides were obtained from tuna protein via enzymatic hydrolysis (TPP), and their peptide sequences were determined. Furthermore, the potential activity of these peptides was predicted, focusing on antioxidant peptides, and compared to the sequence library of known antioxidant peptides to identify common structural motifs. The accuracy of the prediction results was confirmed through in vitro antioxidant assays and molecular docking studies. We identified seven specific peptide segments derived from tuna protein that exhibit antioxidant potential, accounting for approximately 15% of all active peptides. Molecular docking and cell experiments were employed to provide compelling evidence for the presence of antioxidant peptides within tuna protein. This study not only lays a solid foundation for studying the structure of active peptides but also opens up a novel avenue for an expedited assessment of their properties.

18.
Eur J Med Chem ; 268: 116226, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38367493

RESUMO

To interfere the Menin-MLL interaction using small molecular inhibitors has been shown as new treatment of several special hematological malignancies. Herein, a series of Menin-MLL interaction inhibitors with pyrrolo[2,3-d]pyrimidine scaffold were designed, synthesized and evaluated. Among them, compound A6 exhibited potent binding affinity with an IC50 value of 0.38 µM, and strong anti-proliferative activity against MV4-11 cells with an IC50 value of 1.07 µM. Further study showed A6 reduced the transcriptional levels of HOXA9 and MEIS1 genes. Moreover, A6 induced cellular apoptosis, arrested the cell cycle in G0/G1 phase, and reversed the differentiation arrest in a concentration-dependent manner. This study suggested compound A6 was as a novel potent Menin-MLL interaction inhibitor, and it proved that introduction of 4-amino pyrrolo[2,3-d]pyrimidine to occupy the P10 hydrophobic pocket was new idea for design of novel Menin-MLL interaction inhibitors.


Assuntos
Leucemia , Proteína de Leucina Linfoide-Mieloide , Humanos , Proteína de Leucina Linfoide-Mieloide/metabolismo , Leucemia/tratamento farmacológico , Pirimidinas/farmacologia
19.
Water Res ; 253: 121307, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38377930

RESUMO

Although diffusion gradient in thin-film technique (DGT) has realized the in-situ sampling Sulfamethazine (SMT), the traditional DGT devices cannot be served as sensing devices but in-situ sampling devices. Here we report a recyclable surface enhanced Raman scattering (SERS) responsive DGT sensing device (recyclable SERS-DGT Sensing Device) capable of in-situ sensing of SMT in water. This is achieved by innovatively utilizing a recyclable SERS responsive liquid suspension of Au nanoparticles supported on g-C3N4 (Au@g-C3N4NS) as DGT binding phase. Au@g-C3N4NS is synthesized via in-situ growth method and embed in DGT binding phase, which exhibits good SERS activity, aqueous stability recyclable and adsorption performance. The SERS-DGT Sensing Device is valid for measuring SMT under a wide range of conditions (i.e., deployment time 24∼180 h, concentrations range of 1.031∼761.9 ng mL-1, pH 5∼9, ionic strength 0.0001∼0.05 mol L-1 NaCl, DOM concentrations 0∼100 mg L-1, four recycles). Furthermore, substrate combined with DGT binding phase, can integrate the sampling, pretreatment and SERS detection of SMT, which can be recycled, improving the reliability and efficiency of environmental monitoring. In this article, recyclable SERS-DGT Sensing Device, a platform for recyclable in-situ sensing of antibiotics, holds great potential for environmental monitoring.


Assuntos
Nanopartículas Metálicas , Poluentes Químicos da Água , Água , Sulfametazina , Ouro , Reprodutibilidade dos Testes , Monitoramento Ambiental/métodos , Difusão , Poluentes Químicos da Água/análise
20.
Food Res Int ; 179: 114021, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38342541

RESUMO

Sheep milk is rich in fat, protein, vitamins and minerals and is also one of the most important sources of natural bioactives. Several biopeptides in sheep milk have been reported to possess antibacterial, antiviral and anti-inflammatory properties, and they may prevent type 2 diabetes (T2D), disease and cancer. However, the precise mechanism(s) underlying the protective role of sheep milk against T2D development remains unclear. Therefore, in the current study, we investigated the effect of sheep milk on insulin resistance and glucose intolerance in high-fat diet (HFD)-fed mice, by conducting intraperitoneal glucose tolerance tests, metabolic cage studies, genomic sequencing, polymerase chain reaction, and biochemical assays. Hyperinsulinemic-euglycemic clamp-based experiments revealed that mice consuming sheep milk exhibited lower hepatic glucose production than mice in the control group. These findings further elucidate the mechanism by which dietary supplementation with sheep milk alleviates HFD-induced systemic glucose intolerance.


Assuntos
Diabetes Mellitus Tipo 2 , Intolerância à Glucose , Resistência à Insulina , Ovinos , Camundongos , Animais , Dieta Hiperlipídica/efeitos adversos , Intolerância à Glucose/metabolismo , Intolerância à Glucose/prevenção & controle , Diabetes Mellitus Tipo 2/prevenção & controle , Leite/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...